EVALUASI HASIL MATRIX ACIDIZING TERHADAP PRODUKTIVITAS SUMUR A PADA LAPANGAN F

JURNAL

REZA SAPUTRA RINALDY 124.15.016

PROGRAM STUDI TEKNIK PERMINYAKAN FAKULTAS TEKNIK DAN DESAIN INSTITUT TEKNOLOGI DAN SAINS BANDUNG KOTA DELTAMAS 2020

EVALUASI HASIL MATRIX ACIDIZING TERHADAP PRODUKTIVITAS SUMUR A PADA LAPANGAN F

JURNAL

REZA SAPUTRA RINALDY 124.15.016

Diajukan Sebagai Salah Satu Syarat Untuk Mendapatkan Gelar Sarjana Teknik Pada Program Studi Teknik Perminyakan

PROGRAM STUDI TEKNIK PERMINYAKAN FAKULTAS TEKNIK DAN DESAIN INSTITUT TEKNOLOGI DAN SAINS BANDUNG KOTA DELTAMAS 2020

LEMBAR PENGESAHAN

EVALUASI HASIL MATRIX ACIDIZING TERHADAP PRODUKTIVITAS SUMUR A PADA LAPANGAN F

JURNAL ILMIAH

REZA SAPUTRA RINALDY

124.15.016

Diajukan Sebagai Salah Satu Syarat untul Mendapatkan Gelar Sarjana Teknik Pada Program Studi Teknik Perminyakan

Kota Deltamas, 28 September 2020

Menyetujui

Pembimbing

Prof. Dr. Ir. Sudjati Rachmat, DEA

NIP: 195509021980101001

EVALUASI HASIL MATRIX ACIDIZING TERHADAP PRODUKTIVITAS SUMUR A PADA LAPANGAN F

Reza Saputra Rinaldy

Pembimbing: Prof. Dr. Ir. Sudjati Rachmat, DEA

Abstrak

Penurunan laju produksi merupakan hal yang harus diperhatikan pada saat mengecek kondisi sumur. Stimulasi sumur merupakan metode untuk meningkatkan produksi sumur. Dan *matrix acidizing* adalah salah satu teknik stimulasi sumur umum dimana asam disuntikan kedalam reservoir. Tujuan utama dari proses ini adalah untuk memperbaikin kerusakan formasi lubang sumur yang mengakibatkan penurunan produksi.

Pada sumur A pada lapangan F dilakukan matrix acidizing karena penurunan produksinya disebabkan oleh *Scale* yang menghambat laju produksi disekitar lubang perforasi. Penelitian ini dilakukan untuk mengetahu pengaruh laju produksi sebelum dilakukannya *matrix acidizing* dan setelah melakukan *matrix acidizing*.

Evaluasi keberhasilan *Matrix acidizing* berdasarkan beberapa parameter, seperti *Productivity Index* (PI), nilai *Skin* sebelum dan sesudah *Matrix acidizng*, Kurva *Inflow Performance Relationship* (IPR) sebelum dan sesudahnya, dan tanpa menganalisa jenis *scale* pada laporan ini.

Kata kunci: *Matrix Acidizing, Skin, Productivity index, Inflow Performance Relationship* (IPR).

Abstract

The decrease in production rate is a matter that must be considered when checking the condition of the well. Well stimulation is a method to increase well production. And the acidizing matrix is one of the common well stimulation techniques where acid is injected into the reservoir. The main purpose of this process is to repair damage to the wellbore formation which results in decreased production.

In well A in field F an acidizing matrix was carried out because the decrease in production was caused by Scale which inhibited the production rate around the perforation hole. This research was conducted to determine the effect of the production rate before doing the acidizing matrix and after doing the acidizing matrix.

Evaluation of the success of the acidizing Matrix based on several parameters, such as the Productivity Index (PI), Skin values before and after the acidizing Matrix, Inflow Performance Relationship (IPR) curves before and after, and without analyzing the type of scale in this report.

Keywords: Matrix Acidizing, Skin, Productivity index, Inflow Performance Relationship (IPR).

I. Pendahuluan1.1 Latar Belakang

Pada awalnya suatu sumur minyak atau gas dapat berproduksi secara naturally flow, namun dengan seiring berjalannya waktu, tekanan dari reservoir akan mengalami penurunan sehingga mengakibatkan sumur tesebut tidak dapat mengalir secara alami lagi maka diperlukan suatu metode pengangkatan buatan atau artificial lift menggunakan bantuan pompa, secondary recovery apabila penggunaan pompa tidak mengangkat hydrocarbon, dan tertiary recovery untuk kondisi tekanan sumur sudah sangat rendah.

Salah satu penyebab dari penurunan produksi sumur adalah kerusakan formasi. Dapat dilihat dari penurunan laju produksi yang tidak wajar dan adanya nilai *skin* positif. Untuk memperbaiki kondisi tersebut, dapat dilakukan metode *well stimulation* atau stimulasi sumur.

Stimulasi sumur atau Well stimulation merupakan suatu metode untuk memperbaiki sumur-sumur yang mengalami penurunan produksi yang disebabkan oleh kerusakan

1.2 Batasan Masalah

- Parameter keberhasilan ditinjau dari laju produksi, nilai productivity Index (PI), nilai Skin, kurva Inflow Performance Relationship (IPR).
- Pada penilitian ini hanya difokuskan pada stimulasi jenis Matrix Acidizing dan tidak dilakukan perbandingan hasil

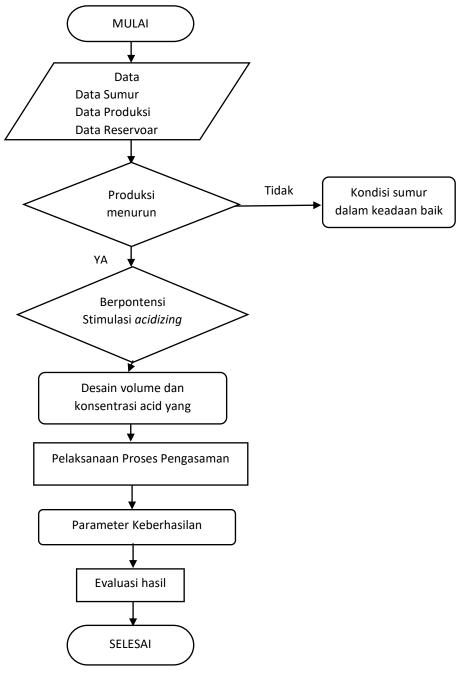
formasi maupun adanya endapanendapan *scale* didalam sumur. *Well stimulation* terbagi menjadi dua jenis yaitu *acidizing* dan *hydraulic fracturing*. Untuk pemilihan metode yang sesuai dapat dikondisikan dengan keadaan sumur tersebut.

Tujuan mendasar dari stimulasi sumur adalah untuk meningkatkan produksi dari sumur dengan meningkatkan produktivitas sumur tersebut. Cara ini dapat menghilangkan segala kerusakan di sekitar lubang sumur atau dengan rekahan konduktif membuat meningkatkan sehingga dapat kemampuan untuk mengalir. (Milligan, 1994)

Sumur A pada Lapangan F merupakan sumur produksi minyak yang masih berproduksi secara alamiah atau *naturally flow*.

Berdasarkan latar belakang permasalahan di atas, penulis tertarik untuk melakukan penelitian tugas akhir dengan judul "Evaluasi Hasil *Matrix Acidizing* Terhadap Produktivitas Sumur A pada Lapangan F".

- dengan metode stimulasi sumur jenis lain.
- Tidak menghitung nilai keekonomiannya..


1.3 Tujuan Penelitian

- Mengevaluasi hasil stimulasi acidizing menggunakan metode Wiggins dan Pudjo Sukarno.
- Membandingkan hasil perhitungan laju produksi sumur

sebelum dan setelah dilakukannya *acidizing*.

1.4 Metodologi

Penelitian tugas akhir ini bertujuan untuk meningkatkan laju produksi pada sumur WAP. Penurunan laju produksi yang terjadi pada sumur ini disebabkan adanya pengendapan *scale* di formasi. Sehingga menghambat laju produksi pada sumur A. Maka dari itu, untuk menghilangkan endapan scale yang ada di formasi metode stimulasi sumur tersebut, dilakukan metode stimulasi matrix acidizing sebagai metode yang sesuai dengan kondisi lapangan F. Karena itu, penyusunan tugas akhir ini dilakukan dengan menggunakan metodologi penelitian yang bertujuan mempermudah pengerjaan. Adapun workflow yang digunakan, terlampir pada gambar

Gambar 1.1 Workflow Stimulasi Matrix Acidizing

II. Pembahasan

Sumur yang akan diberikan treatment matrix acidizing adalah sumur yang mengalami penurunan laju produksi. Penyebab penurunan laju produksi pada sumur A

diindikasikan karena adanya skin factor yang ada di formasi. Pada stimulasi *matrix acidizing* ini mengevaluasi keberhasilan operasi *matrix acidizing* tersebut berdasarkan parameter terkait.

2.1 Analisa Data

Data	Sebelum Acid	Setelah Acid	Satuan
Laju produksi rata-rata (q)	1441	1771	BFPD
Rata-rata flowing well head	637.98	1066.25	Psig
pressure (FWHP)			
Rata-rata GOR	1281	1030	Scf/bbl
Rata-rata GLR	391.62	1026.24	Scf/bbl
Laju produksi <i>oil</i> rata-rata	617	1724	BOPD
Water Cut (WC) rata-rata	56	5.51	%
Water Fraction	0.56	0.05	

Tabel 2.1 Data Produksi

Tabel 2.2 Data Sumur A

Data	Nilai	Satuan
Ps @datum	2758.30	Psi
Pwf Sebelum Acidizing	2000	Psi
Pwf setelah Acidizing	2130	Psi
Diameter casing	7	" (inch)
Diameter luar tubing (OD)	3.50	" (inch)
Diameter dalam tubing (ID)	2.99	" (inch)
MD perforasi	7783	Ft
TVD Perforasi	5362.40	Ft
Sudut elevasi	50	Degree
Permeabilitas	25	Md
Viscositas	1.02	Ср
Formation volume factor (Bo)	1.12	Rb/STB
Litology	Carbonat	
Radius of well	0.58	Ft
Range perforasi	38	Ft
Thickness Reservoir	500	Ft
Porosity	0.10	

API	39.70	API
EOT	7664	Ft
Depth Tubing	7.55	Ft

Pada sumur A *treatment matrix acidizing* dilakukan pada lubang *perforasi*. Karena pada lubang *perforasi* mengindikasikan adanya endapan *scale*.

2.2 Perhitungan Nilai Skin

Hal yang perlu dilakukan sebelum memutuskan stimulasi apa yang digunakan adalah menghitung nilai skin. Perhitungan di lakukan untuk melihat apakah pada sumur ini mengalami kerusakan formasi. Dari perhitungan ini juga bisa dapat menentukan metode stimulasi apa yang akan dipilih. Berdasarkan data yang tersedia, untuk menghitung nilai skin dapat dilakukan dengan cara sebagai berikut:

• Nilai *Skin* sebelum *acidizing*

$$s = \frac{0.00708 \ k \ h}{Q_o \ \mu B_o} \Delta P_s$$

$$s = \frac{0.00708 \times 25 \times 38 \times (2758.3 - 2000)}{617 \times 1.02 \times 1.12}$$
$$s = 7.23$$

• Nilai *Skin* Sesudah *Acidizing* $s = \frac{0.00708 \ k \ h}{Q_o \ \mu \ B_o} \Delta P_s$

$$s = \frac{0.00708 \times 25 \times 38 \times (2758.3 - 2130)}{1724 \times 1.02 \times 1.12}$$
$$s = 2.80$$

2.3 Perhitungan pada desain Pengasaman

a. Menghitung Kapasitas
Tubing (Bbl/ft)
Kapasitas Tubing = $\frac{(ID\ Tubing\)^2}{1029.4}$ Kapasitas tubing = 0.0087
Bbl/ft

- b. Menghitung Kapasitas Casing

 Kapasitas $Casing \frac{(ID\ Casing\)^2}{1029.4}$ Kapasitas Casing = 0.0394Bbl/ft
- c. Menentukan Volume Tubing (EOT*Kapasitas Tubing)

Volume Tubing : 66.65 Bbl

d. Menentukan Volume Casing

Volume Casing : (Kapasitas Casing* Depth Tubing)

Volume Casing : 0.30 Bbl

e. Menghitung Volume Displacement

Vol. *Displacement* : (Vol. Tubing + Vol. *Casing*)

Vol. Displacement : 66.95 Bbl

f. Menentukan Tekanan Rekah pada Formasi

P rekah formasi : Frac Gradient* Depth Mid Perfo

P rekah formasi :5058.95 psi

2.4 Pemilihan Acid Untuk stimulasi Matrix Acidizing

Acid utama yang digunakan pada treatment sumur A ini menggunakan

HCL 32% dengan litology batuan karbonat. Beberapa additive yang digunakan pada sumur ini adalah corrosion inhibitor, mutual solvent, non-emulsifer.

2.5 Perhitungan *Productivity Index*

a. Perhitungan *Productivity index* sebelum *acidizing*

$$PI = \frac{q}{(ps - pwf)}$$

$$PI = \frac{617}{(2758.3 - 2000)}$$

2.6 Evaluasi Stimulasi *Matrix Acidizing*

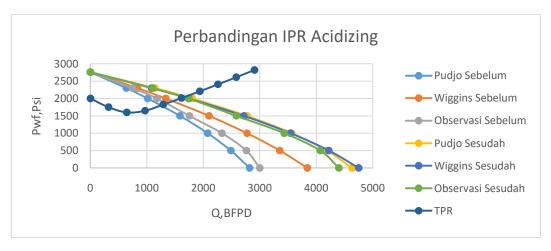
Keberhasian *matrix acidizing* pada sumur A dapat dievaluasi berdasarkan beberapa parameter, yaitu:

- 1. Nilai Skin
- 2. Nilai *Productivity Index* (PI)
- 3. Kurva IPR

2.7 Analisa Kurva IPR

Analisa kurva inflow performance reletionship dibuat menggunakan

$$PI = 0.81$$


b. Perhitungan *productivity index* setelah *acidizing*

$$PI = \frac{q}{(ps - pwf)}$$

$$PI = \frac{1742}{(2758.3 - 2130)}$$

$$PI = 2.77$$

persamaan Wiggins dan persamaan Pudjo Sukarno karena dilihat dari data merupakan tiga fasa. kemudian dilakukan perbandingan kurva inflow performance relationship pada kondisi sebelum stimulasi dan kondisi setelah stimulasi untuk melihat kemampuan produksi optimum sumur. laju Berikut ini merupakan grafik perbandingan antara kondisi sebelum dan setelah acidizing sebagai berikut

Gambar 2. 1 Kurva Perbandingan IPR

Setelah dilakukan perhitungan dengan menggunakan Wiggins dan

Pudjo Sukarno maka didapat hasil perhitungan dari grafik diatas. Bahwa hasil perhitungan yang mendekati dengan hasil data dari observasi adalah perhitungan dari Pudjo Sukarno. Dilihat dari Q pada perhitungan Pudjo Sukarno memiliki hasil yang mendekati pada hasil data observasi.

Pada grafik IPR metode Pudjo Sukarno kondisi under coractec dan Upper coractec bisa jadi diakibatkan oleh perbedaan water cut yang sangat jauh. Dimana diketahui water cut sebelum 56% dan sesudahnya 5%. Kondisi water cut ini bisa disebabkan oleh drive mechanism pada reservoir lapangan ini. Dimana pada metode Pudjo Sukarno, parameter water cut sangat penting untuk mengukur kandungan air pada fluida 3 fasa. Karena perbedaan water cut ini lah yang memungkinkan terjadinya perbedaan kurva IPR metode Pudjo sukarno dan data observai sebelum dan sesudahnya.Dan untuk hasil perhitungan persamaan Wiggins dan Pudjo Sukarno dapat dilihat sebagai berikut:

Tabel 2. 1 Kondisi laju alir terhadap Pwf sebelum Acidizing

Sebelum					
Pudjo Sukarno		Wiggins		ins Observasi	
2758.3	0	2758.3	0	2758.3	0.1
2300	636.8606	2300	833.3662	2300	748.158
2000	1016.831	2000	1336.771	2000	1179.62
1500	1586.597	1500	2101.735	1500	1754.903
1000	2076.964	1000	2774.144	1000	2330.185
500	2487.932	500	3353.997	500	2761.647
0	2819.503	0	3841.295	0	3000

Tabel 2. 2 Kondisi laju alir terhadap Pwf sesudah Acidizing

Sesudah					
Pudjo Sukarno		Wiggins		Wiggins Observasi	
2758.3	0	2758.3	0	2758.3	0.1
2300	1140.516	2300	1085.453	2300	1102.524
2000	1804.589	2000	1742.408	2000	1738.349
1500	2772.143	1500	2717.975	1500	2586.115
1000	3565.651	1000	3544.347	1000	3433.881
500	4185.115	500	4221.522	500	4069.705
0	4630.533	0	4749.5	0	4400

Tabel 2. 3 Parameter Keberhasilan

Parameter keberhasilan	Sebelum <i>Acidizing</i>	Setelah <i>Acidizing</i>	Satuan
Skin factor	7.24	2.80	
Productivity index	0.81	2.77	Bbl/d/psi
Qmaks	1664.00	4651.90	Bfpd
Q optimum	1290	1610	Bfpd

Parameter keberhasilan dari kegiatan stimulasi sumur yang diketahui adalah berkurangnya nilai skin dan meningkatnya laju produksi pada sumur tersebut dan membuat meningkatkan nilai productivity index-nya juga. Secara teori nilai skin bernilai positif masih dikatakan belum berhasil, namun kalau dilihat dari laju produksi yang meningkat dapat dikatakan stimulasi ini berhasil.

III. Kesimpulan dan Saran

3.1 Kesimpulan

1. Untuk mengetahui keberhasilannya suatu acidizing kegiatan dapat dilihat dari beberapa parameter seperti laju alir, inflow performance kurva relationship, productivity index dan nilai skin. Dilihat dari hasil laju produksinya, mengalami peningkatan pada kurva inflow performance relationship dan productivity index. Dari kurva inflow performance relationship dengan menggunakan metode Pudjo Sukarno, diketahui laju alir optimum sebelum stimulasi kegiatan adalah sekitar 1291 bfpd mengalami peningkatan menjadi 1614 bfpd.dilihat dari data tersebut bahwa mengalami sudah

- kenaikan sebesar 25% Begitu juga dengan nilai productivity index yang mengalami peningkatan 0.81 bbl/d/psi menjadi 2.77 bbl/d/psi. Lalu untuk nilai skin terjadi penurunan dari 7.24 sampai 2.80. Sehingga kegiatan stimulasi dapat dikatakan berhasil untuk meningkatkan laju produksi minyak.
- 2. Dari perhitungan Wiggins Pudjo Sukarno yang paling mendekati pada data observasi adalah perhitungan Pudjo sukarno. Karena kalau dilihat dari perhitungan metode Pudjo Sukarno. Analisi regresi yang digunakan cukup banyak gas, minyak, seperti water cut. Jadi ini mungkin bisa menyebabkan vang metode Pudjo Sukarno lebih mendekati data Observasi.

3.2 Saran

- 1. Dalam metode *Matrix Acidizing* ini walaupun sudah dapat dikatakan berhasil akan tetapi perlu kajian lebih lanjut tentang desain acid seperti konsentrasi HCL dan zat aditif yang digunakan agar lebih dapat meningkatkan produktivitas sumur tersebut.
- 2. Perlu dilakukan analisa lebih lagi untuk melihat pengaruh water cut terhadap kurva IPR pada Metode Pudjo Sukarno.

DAFTAR PUSTAKA

- 1. Allen, T.O, Robert, A.P. 1993, "Production Operations, Well Completion, Workover and Stimulation.
- 2. Boyun, G.; William C. Lyons, & Ali Ghalambor. 2007, Petroleum Production Engineering Fundamentals. USA: Elsevier
- 3. Brown, Kermit E. 1977. The Technology of Artificial lift Method. USA PennWell Publishing Company.
- 4. Economides, Michael J., Nolte, Kenneth G. 2000. Reservoir Stimulation Third Edition. Wiley.

- 5. Freed, Christoper N. Hoefner, Mark L., Fogler, H. Scott.. Chapter 3: Microemulsion Applications in Carbonate Reservoir Stimulation. Intech. Milligan, M.. 1994. Well Stimulation Using Acids.
- 6. Nyama, Orume Silvy. 2018. Penetuan Volume Injeksi Dalam Proses Asam Acidizing Pada Sumur Untuk Meningkatkan Perolehan Minyak Pada Sumur "Ha" Lapangan "Lu" Pertamina EP Asset 3 Subang Field. Fakultas Teknik dan Desain. Institut Teknologi dan Sains Bandung. Kota Deltamas.
- 7. Slide Bahan Ajar Teknik Produksi, Aznaldi Agustia
- 8. Slide Bahan Ajar Stimulasi Sumur, I Ketut Sunarka
- 9. Widyanti, Safirah. 2015. Evaluasi Keberhasilan Matrix Acidizing dalam Peningkatan Produksi Sumur Rama A-02 dan Rama A-03 pada Lapangan Rama-A. Fakultas Teknologi Kebumian dan Energi. Universitas Trisakti. Jakarta Barat.
- 10. Wiggins, M.L.. 1994. Generalized Inflow Performance Relationship for Three Phase Flow. SPE Reservoir Engineering.